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Preface

The Indian Conference on Logic and Its Applications (ICLA) is a biennial conference
organized under the aegis of the Association for Logic in India. The tenth edition of the
conference was held during March 3–5, 2023, at the Indian Institute of Technology
(IIT) Indore. This volume contains papers presented at the 10th ICLA.

A variety of themes are covered by the papers published in the volume. These are
related to modal and temporal logics, intuitionistic connexive and imperative logics,
systems for reasoning with vagueness and rough concepts, topological quasi-Boolean
logic and quasi-Boolean based rough set models, and first-order definability of path
functions of graphs. Three single blind reviews for each submission were ensured.
Aside from reviews by the Program Committee (PC) members, there were reviews by
external experts. In some cases, in order to reach a final decision on acceptance, there
were further reviews by PC members or external experts. The Easy Chair system was
used for submission and reviews; it proved to be quite convenient. We would like to
express our deep appreciation to all the PC members for their efforts and support. We
also thank all the external reviewers for their invaluable help.

ICLA 2023 included 8 invited talks, and 6 of these appear in the volume as full
papers. We are immensely grateful to Mihir K. Chakraborty, Supratik Chakraborty,
Marie Fortin, Giuseppe Greco, Kamal Lodaya, Sandra Müller, R. Ramanujam and Yde
Venema for kindly accepting our invitations.

Special thanks are due to IIT Indore, the organizing committee steered by Md. Aquil
Khan and all the volunteers, for making this edition of ICLA possible.

We are grateful to Springer, for agreeing to publish this volume in the LNCS series.

February 2023 Mohua Banerjee
A. V. Sreejith
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Quasi-Boolean Based Models in Rough
Set Theory: A Case of Covering

Masiur Rahaman Sardar(B)

Department of Mathematics, City College, Kolkata 700009, West Bengal, India

masiur sardar@citycollegekolkata.org

Abstract. Rough set theory has already been algebraically investigated
for decades and quasi-Boolean algebra has formed a basis for several
structures related to rough sets. An initiative has been taken in the paper
[17] to obtain rough set models for some of these structures. These models
have been constructed by defining a g-approximation space 〈U,Rg〉 out
of a generalised approximation space 〈U,R〉 and an involution g. In this
paper, as a continuation of [17], we have thrown light on covering cases
and constructed a set model for the algebra IqBa2 [17].

Keywords: Rough set theory · Pre-rough algebra · Quasi-Boolean
algebra · Modal logic

1 Introduction

Rough set theory has already been algebraically investigated for decades and
quasi-Boolean algebra (qBa) has formed a base for a number of abstract algebras
emerging out of rough sets [11]. Pre-rough algebra, amongst them, is one and it
was defined by Banerjee and Chakraborty in [3]. The base of pre-rough algebra
is a quasi-Boolean algebra which is a more general structure than a Boolean
algebra as the law of excluded middle (x∨ ∼ x = 1) and law of contradiction
(x∧ ∼ x = 0) generally do not hold in a qBa. Topological quasi-Boolean algebra
(tqBa) and topological quasi-Boolean algebra with modal axiom S5 (tqBa5)
come naturally as predecessors of pre-rough algebra.

Later, from different motivations, many abstract algebras stronger than qba
but weaker than pre-rough algebra were developed. As for example, systemI
algebra, systemII algebra [14] etc. have been introduced in order to access the
rough implication → which was defined as x → y ≡ (¬Ix∨ Iy) ∧ (¬Cx∨Cy) in
pre-rough and rough algebras [2,3], where C ≡ ¬I¬. On the other hand, three
intermediate algebras IA1 (intermediate algebra of type 1), IA2 (intermediate
algebra of type 2) and IA3 (intermediate algebra of type 3) [15,19] are defined
based on three intermediate properties viz. ¬Ix∨Ix = 1, for all x (IP1), I(x∨y) =
Ix ∨ Iy, for all x, y (IP2) and Ix ≤ Iy and Cx ≤ Cy imply x ≤ y, for all x, y
(IP3) which play a crucial role to define rough implication.

Besides this, 3-valued �Lukasiewicz (Monteiro) algebra [4], 3-valued
�Lukasiewicz (Moisil) algebra [5], Tetravalent Modal Algebra (TMA) [7] are some
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Banerjee and A. V. Sreejith (Eds.): ICLA 2023, LNCS 13963, pp. 159–171, 2023.
https://doi.org/10.1007/978-3-031-26689-8_12
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of the well-established algebraic structures based on quasi-Boolean algebra. It
has been established in [1,14] that 3-valued �Lukasiewicz (Monteiro) algebra
and 3-valued �Lukasiewicz (Moisil) algebra are equivalent to pre-rough algebra.
Whereas in [14], it was observed that TMA is stronger than tqBa5 but weaker
than a pre-rough algebra. In the same paper [14], it has been mentioned that the
algebra MDS5 [6] is equivalent to IA2 if lattice distributivity is added to MDS5.
A relationship diagram amongst the aforesaid algebras is shown in Fig. 1. For
details of these algebras and their logics we refer to [2,3,14,18].

In the paper [3], a rough set model has been constructed for the abstract
pre-rough algebra. It was developed in the context of rough set theory specially
based on the notions of rough equality and rough inclusion. It has been described
in [3] as follows. Let 〈U,R〉 be an approximation space. Two subsets P and
Q of U are said to be roughly equal if PR = Q

R
and P

R
= Q

R
where PR

and P
R

are Pawlakian lower and upper approximations of P respectively. An
equivalence relation � is defined in 2U , the power set of U , as P � Q if and
only if P and Q are roughly equal. Each equivalence class [P ]� of 2U/� is
called a rough set. Using these rough sets and suitable operations 
,�,¬ and
I, 〈2U/�,
,�,¬, I, [∅]�, [U ]�〉 is a model of an abstract pre-rough algebra. The
operations 
,�,¬ and I are defined as

[P ]� 
 [Q]� = [P 
 Q]�,
[P ]� � [Q]� = [P � Q]�,
¬[P ]� = [¬P ]�,
I[P ]� = [IP ]�,

where

P 
 Q = (P ∩ Q) ∪ (P ∩ Q
R ∩ (P ∩ Q

R
)c),

P � Q = (P ∪ Q) ∩ (P ∪ Q
R

∪ (P ∪ Q
R
)c),

¬P = P c,

IP = PR,

∩,∪ and c being the set theoretic intersection, union and complementation. The
lattice order � in the above pre-rough algebra is [P ]� � [Q]� if and only if P is
roughly included in Q, i.e., PR ⊆ Q

R
and P

R ⊆ Q
R
.

But, there are no proper set theoretic rough set models of the abstract alge-
bras shown in Fig. 1 which are really weaker than pre-rough algebras. The phrase
‘proper set theoretic rough set model’ means that it should be a set model and
should not reduce to a pre-rough algebra. A step has been taken in this regard
in the paper [18]. In this paper, set models of System0, stqBa, stqBa-D, stqBa-
T, stqBa-B, tqBa, tqBa5 and IA1 have been developed using the relation-based
rough set theory.

Another direction of work was initiated in the papers [15,17]. In these papers,
the authors have considered those algebras where an implication (→) satisfying
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the property (P→): x ≤ y if and only if x → y = 1, for all x, y, can not be
defined or not available till now. It is to be noted that an implication → satisfying
the property (P→) is required in an algebra to develop the Hilbert-type logic
system corresponding to the algebra. For construction of the said logic system,
following Rasiowa, algebras are defined by imposing an implication → obeying
the property (P→). These algebras are shown in Fig. 2 and for further information
about the algebras and their logics one may see the papers [15,17]. Rough set
models of some of the algebras IqBaO, IqBaT, IqBa4, IqBa5, IqBa1, IqBa1,T,
IqBa1,4 and IqBa1,5 have been presented in [17].

This current paper deals with a parallel type of research that has been ini-
tiated in our earlier papers [17,18]. In fact, in this paper, covering cases are
considered and one set model has been developed using “deleted neighborhood”,
in other words, anti-reflexive neighborhood that has importance in a number of
areas of computer applications, e.g., the field of computer security [9].

Fig. 1. Structures based on qBa: P ⇒ Q stands for the algebra Q has one more operator
and some axioms for the new operator than the algebra P . P −→ Q stands for both
the algebras P and Q have the same operations and the algebra Q is always the algebra
P . P · · ·Q stands for the algebras P and Q are independent.

2 Rough Set Models - Relational Approach

In the papers [17,18], rough set models have been presented for the algebras
System0, stqBa, stqBa-D, stqBa-T, stqBa-B, tqBa, tqBa5, IA1, IqBaO, IqBaT,
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Fig. 2. Algebras with imposed implications: P ⇒ Q stands for the algebra Q has one
more operator and some axioms for the new operator than the algebra P . P −→ Q
stands for both the algebras P and Q have the same operations and the algebra Q is
always the algebra P .

IqBa4, IqBa5, IqBa1, IqBa1,T, IqBa1,4 and IqBa1,5. All these algebras are based
on qBa and therefore to construct their rough set models we have focused our
attention on a representation theorem of qBa developed by Rasiowa [13]. As
demonstrated by her, for any set U we can define an algebra 〈2U ,∩,∪,¬, ∅, U〉
which may be proved to be a quasi Boolean algebra, where ¬, called quasi-
complementation, is not the standard set-theoretic complementation c but is
defined by means of an involution g (i.e. a map on U satisfying g(g(u)) = u, for all
u ∈ U) namely ¬P = (g(P ))c, P ⊆ U . The lower and the upper approximation
operators R,

R : 2U → 2U have been defined in a generalised approximation
space 〈U,R〉 by

PR = {u ∈ U : Ru ⊆ P}
and

P
R

= {u ∈ U : Ru ∩ P �= ∅},
where Ru = {v ∈ U : uRv}. For any P ∈ 2U , PR and P

R
are dual with

respect to the set complementation; the question is, how to define the algebraic
counterparts of these operators in the aforementioned quasi-Boolean algebra,
so as to make them dual with respect to the quasi-complementation ¬. The
issue has been resolved by defining a g-approximation space 〈U,Rg〉 out of a
generalised approximation space 〈U,R〉 and an involution g on U .

Let 〈U,R〉 be a generalised approximation space and g : U → U be an
involution. A binary relation Rg on U has been defined as follows:

for any two elements u and v ∈ U, uRgv if and only if g(u)Rg(v). (1)

That is, two elements u, v ∈ U are related with respect to a new relation Rg

if and only if their g-images are related in the relation R. We call 〈U,Rg〉 a
g-generalised approximation space or simply, a g-approximation space.
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As g is an involution on U , R can be obtained from Rg as follows:

for any two elements u and v ∈ U, uRv if and only if g(u)Rgg(v). (2)

Similarly, it says that two elements u, v ∈ U will be related in the relation R if
and only if their g-images are so in the relation Rg.

In this g-approximation space 〈U,Rg〉, we have defined g-lower approximation
and g- upper approximation g,

g : 2U → 2U as follows:
for any P ∈ 2U ,

P g = {u ∈ U : Rg
u ⊆ P}

and
P

g
= {u ∈ U : Rg

g(u) ∩ g(P ) �= ∅}
where Rg

u = {v ∈ U : uRgv}. Using these lower-upper approximations and
imposing conditions like reflexivity, symmetric, transitivity etc. on Rg proper
rough set models of System0, stqBa, stqBa-D, stqBa-T, stqBa-B, tqBa, tqBa5,
IA1 have been constructed in [18].

To construct rough set models for the algebras IqBaO, IqBaT, IqBa4, IqBa5
shown in Fig. 2, a suitable operation that corresponds to → (available in the
above algebras) is needed. Boolean implication P → Q(≡ P c ∪ Q), in one way,
serves the purpose smoothly. On the other hand, g image of Boolean implication
g(P → Q)(≡ P →1 Q) also fulfils the property (P→). With their help, rough set
models of IqBaO, IqBaT, IqBa4, IqBa5 have been presented in [17].

A pair of new approximation operators g,1,
g,1 : 2U → 2U has been defined

[17] in order to obtain set models for the algebras IqBa1, IqBa1,T, IqBa1,4 and
IqBa1,5 as follows:

P g,1 = {u ∈ U : Rg
u ⊆ P} ∩ {u ∈ U : Rg

g(u) ⊆ P}
and

P
g,1

= {u ∈ U : Rg
g(u) ∩ g(P ) �= ∅} ∪ {u ∈ U : Rg

u ∩ g(P ) �= ∅}.
For details, one may see the paper [17].

3 Rough Set Model - Covering Based Approach

In this section we shall discuss the covering based rough sets and incorporate
the involution g to construct lower-upper approximations so that they will be
dual approximations with respect to the quasi-complementation. As we have
constructed two types of lower-upper approximations based on a binary relation,
some natural questions may arise on covering cases in the following form:

– How can a parallel study be introduced on covering based rough set theory
and what would be outcomes in that case?

– Is it possible to develop rough set models of some of the remaining algebras
through this study?
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In response to the first question, we have defined a g-covering approximation
space out of a covering approximation space and an involution g. Thereafter,
the basic notions like Friends of u, Neighborhood of u etc. are introduced in a
g-covering approximation space in the same way as they have been defined in a
covering approximation space. Relationships between these two spaces and the
above-mentioned notions are studied.

For the last question, a new type of collection at each point of a g-covering
approximation space has been developed. We call it a “deleted neighborhood”.
For the importance of this neighborhood, we have taken the following words as
it is from the paper [9]: “a neighborhood N(p) of p may be punctured or empty;
by that we mean the neighborhood does not contain its center p or is an empty
set. Such a neighborhood is called an anti-reflexive neighborhood, including the
case of empty neighborhood. It is useful in many applications, e.g., in computer
security. We may consider a set of “my” enemies as a neighborhood. Surely,
“myself” is not included in that set”.

With the help of this deleted neighborhood or anti-reflexive neighborhood,
lower-upper approximations have been defined. A rough set model of IqBa2 has
been presented using these lower-upper approximations.

3.1 Basics in a Covering Approximation Space

Definition 1 [16] (Covering of a set): Let U be a non empty set and C = {Ui(�=
∅) ⊆ U : i ∈ I}, where I is an index set, is said to be a covering of U if

∪
i∈I

Ui = U.

Definition 2 [16] (Covering approximation space): Let U be a non empty set
and C be a covering of U . Then, the ordered pair 〈U, C〉 is called a covering
approximation space.

Definition 3. Let 〈U, C〉 be a covering approximation space. For each u ∈ U ,

1. (Friends of u): [16] Friends of u is defined by

F C(u) = ∪
u∈Ui

Ui.

It is also called the indiscernible neighborhood of u [10].
2. (Neighborhood of u): [16] Neighborhood of u is defined by

NC(u) = ∩
u∈Ui

Ui.

3. (Friends’ enemy of u): [10,16] Friends’ enemy of u is defined by

FEC(u) = U − F C(u).
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4. (Kernel of u): [16] Kernel of u is defined by

KC(u) = {y ∈ U : ∀Ui(u ∈ Ui ⇔ y ∈ Ui)}.
Let PC = {KC(u) : u ∈ U}. Then, PC is a partition of U and called a partition
generated by the covering C.

5. (Minimal description and Maximal description of u): [12,20] Minimal
description and Maximal description of u are defined respectively as

mdC(u) = {Ui ∈ C : u ∈ Ui and ∀U ∈ C(u ∈ U ⊆ Ui implies U = Ui)}
and

MdC(u) = {Ui ∈ C : u ∈ Ui and ∀U ∈ C(U ⊇ Ui implies U = Ui)}.
We are now going to define a g-covering approximation space in the following

way.

3.2 g-covering Approximation Space

Proposition 1. Let 〈U, C〉 be a covering approximation space and g: U → U be
an involution, i.e., g(g(u)) = u, for all u ∈ U . Then g(C) = {g(Ui) : Ui ∈ C} is
a covering of U .

Proof. Let u ∈ U . Then, g(u) ∈ Ui, for some i ∈ I (As, C = {Ui(�= ∅) ⊆ U :
i ∈ I} is a covering of U). Then, by the definition of g, u ∈ g(Ui) and hence
g(C) = {g(Ui) : Ui ∈ C} is a covering of U .

From the above proposition, we now define a g-covering approximation space
below.

Definition 4. Let 〈U, C〉 be a covering approximation space and g be an involu-
tion on U . Then, 〈U, g(C)〉 will be called a g-covering approximation space.

In general, C �= g(C). The following example supports the statement.

Example 1. Let U = {a, b, c, d, e}, C = {U1 = {a, b}, U2 = {d, e}, U3 = {c, e}}
be a covering of U and g : U → U be an involution defined by g(a) =
c, g(b) = d, g(c) = a, g(d) = b, g(e) = e. Now, g( C) = {g(U1) = {c, d}, g(U2) =
{b, e}, g(U3) = {a, e}} and hence C �= g(C).

The following is a necessary and sufficient condition that reveals when C and
g(C) coincide.

Proposition 2. Let 〈U, g(C)〉 be a g-covering approximation space. Then C =
g(C) if and only if for each i ∈ I, g(Ui) = Uj, for some j ∈ I.

Proof. Let C = g(C) and Ui ∈ C, for any i ∈ I. Then Ui ∈ g(C) [as C = g(C)]. This
gives, Ui = g(Uj), for some j ∈ I. Conversely, let for each i ∈ I there exist j ∈ I
such that g(Ui) = Uj . We have to show that C = g(C). Let Ui ∈ C. Then by the
hypothesis g(Ui) = Uj , for some j ∈ I. Then by the definition of g, Ui = g(Uj).
As Uj ∈ C, g(Uj) ∈ g(C), i.e., Ui ∈ g(C). Thus, C ⊆ g(C). Let Y ∈ g(C). Then
Y = g(Uj), for some Uj ∈ C. Then by the hypothesis g(Uj) = Uk, for some k ∈ I.
Thus, Y = Uk ∈ C and hence g(C) ⊆ C.
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Note 1. If g(Ui) = Ui, for all i ∈ I then C = g(C). But the converse, i.e., C = g(C)
implies g(Ui) = Ui, for all i ∈ I, is not true as shown by an example given below.

Example 2. Let U and g be the same as mentioned in Example 1. Let C =
{U1 = {a, e}, U2 = {c, e}, U3 = {b}, U4 = {d}} be a covering of U . Then, g(
C) = {g(U1) = {c, e}, g(U2) = {a, e}, g(U3) = {d}, g(U4) = {b}} and hence
C = g(C) but for none of i = 1, 2, 3, 4, g(Ui) = Ui.

Now, we define the notions of Friends of u, Neighborhood of u etc. in a g-
covering approximation space 〈U, g(C)〉.
Definition 5. Let 〈U, g(C)〉 be a g-covering approximation space. Then for each
u ∈ U ,

1. Friends of u is defined by

F g(C)(u) = ∪
u∈g(Ui)

g(Ui),

2. Neighborhood of u is defined by

Ng(C)(u) = ∩
u∈g(Ui)

g(Ui),

3. Friends’ enemy of u is defined by

FEg(C)(u) = U − F g(C)(u),

4. Kernel of u is defined by

Kg(C)(u) = {y ∈ U : ∀g(Ui)(u ∈ g(Ui) ⇔ y ∈ g(Ui))}.

Let Pg(C) = {Kg(C)(u) : u ∈ U}. Then, Pg(C) is a partition of U and hence it
will be called partition generated by the covering g(C).

5. Minimal description of u is defined by
mdg(C)(u) = {g(Ui) ∈ g(C) : u ∈ g(Ui) and ∀X ∈ g(C)(u ∈ X ⊆ g(Ui)
implies X = g(Ui))}.

6. Maximal description of u is defined by
Mdg(C)(u) = {g(Ui) ∈ g(C) : u ∈ g(Ui) and ∀X ∈ g(C)(X ⊇ g(Ui)
implies X = g(Ui))}.

The following example is considered to show that Friends of u, Neighborhood
of u etc. in a covering approximation space are generally not the same with
Friends of u, Neighborhood of u etc. in the g-covering approximation space.

Example 3. Let U, C and g be the same as defined in Example 1. Considering
u = c we get

1. F g(C)(c) = g(U1) = {c, d} �= F C(c) = {c, e} ,
2. Ng(C)(c) = g(U1) = {c, d} �= NC(c) = {c, e},
3. FEg(C)(c) = U − F g(C)(c) = {a, b, e} �= FEC(c) = {a, b, d},
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4. Kg(C)(c) = {y ∈ U : ∀g(Ui)(c ∈ g(Ui) ⇔ y ∈ g(Ui))} = {c, d} �= KC(c) = {c},
5. mdg(C)(c) = {g(Ui) ∈ g(C) : c ∈ g(Ui) and ∀X ∈ g(C)(c ∈ X ⊆ g(Ui) implies

X = g(Ui))} = {g(U1) = {c, d}} �= mdC(c) = {U3 = {c, e}},
6. Mdg(C)(c) = {g(Ui) ∈ g(C) : c ∈ g(Ui) and ∀X ∈ g(C)(U ⊇ g(Ui) implies

X = g(Ui))} = {g(U1) = {c, d}} �= MdC(c) = {U3 = {c, e}}.
7. Pg(C) = {Kg(C)(u) : u ∈ U} = {Kg(C)(a) = {a},Kg(C)(b) = {b},Kg(C)(c) =

{c, d} = Kg(C)(d),Kg(C)(e) = {e}} �= PC = {KC(a) = {a, b} = KC(b),
KC(c) = {c},KC(d) = {d},Kg(C)(e) = {e}}

Proposition 3. Let 〈U, g(C)〉 be a g-covering approximation space. Then,
1. F C(u) = g(F g(C)(g(u))) and F g(C)(u) = g(F C(g(u))), for all u ∈ U ,
2. NC(u) = g(Ng(C)(g(u))) and Ng(C)(u) = g(NC(g(u))), for all u ∈ U ,
3. FEC(u) = g(FEg(C)(g(u))) and FEg(C)(u) = g(FEC(g(u))), for all u ∈ U ,
4. KC(u) = g(Kg(C)(g(u))) and Kg(C)(u) = g(KC(g(u))), for all u ∈ U ,
5. mdC(u) = g(mdg(C)(g(u))) and mdg(C)(u) = g(mdC(g(u))), for all u ∈ U ,
6. MdC(u) = g(Mdg(C)(g(u))) and Mdg(C)(u) = g(MdC(g(u))), for all u ∈ U ,
7. PC = g(Pg(C)) and Pg(C) = g(PC), where g(Pg(C)) = {g(Y ) : Y ∈ Pg(C)} and

similarly for g(PC).

Proof. 1. Let y ∈ F C(u). Then, y, u ∈ Uj , for some j ∈ I and hence g(y), g(u) ∈
g(Uj). This gives, g(y) ∈ F g(C)(g(u)) and hence g(g(y)) ∈ g(F g(C)(g(u))), i.e.,
y ∈ g(F g(C)(g(u))). Thus F C(u) ⊆ g(F g(C)(g(u))). Let y ∈ g(F g(C)(g(u))). Then
y = g(z), where z ∈ F g(C)(g(u)). This implies, z, g(u) ∈ g(Uk), for some k ∈ I
and therefore g(z), g(g(u)) ∈ g(g(Uk)), i.e., y = g(z), u ∈ Uk. This gives,
y ∈ F C(u) and therefore g(F g(C)(g(u))) ⊆ F C(u). Thus, F C(u) = g(F g(C)(g(u))).
Proofs of 2, 3, 4, 5, 6 and 7 can be done similarly.

It is time now to define deleted neighborhood or anti-reflexive neighborhood of
an element u in U in order to develop a rough set model for the algebra IqBa2.
Definition 6. Let 〈U, g(C)〉 be a g-covering approximation space. For each u ∈
U , deleted Neighbourhood of u in the covering approximation space 〈U, C〉 and
in the g-covering approximation space 〈U, g(C)〉, denoted by NC

d (u) and N
g(C)
d (u)

respectively, are defined by NC
d (u) = NC(u)−{u} and N

g(C)
d (u) = Ng(C)(u)−{u}.

Note 2. For each u ∈ U , u does not belong to NC
d (u) and N

g(C)
d (u). Moreover,

NC
d (u) or N

g(C)
d (u) may be empty for some u ∈ U .

Proposition 4. Let 〈U, g(C)〉 be a g-covering approximation space. Then for
each u ∈ U , NC

d (u) = g(Ng(C)
d (g(u))) and N

g(C)
d (u) = g(NC

d (g(u))).
Proof.

N
g(C)
d (g(u)) = Ng(C)(g(u)) − {g(u)} [from Definition 6]

Then, g(N
g(C)
d (g(u))) = g(Ng(C)(g(u)) − {g(u)})

= g(Ng(C)(g(u))) − g({g(u)}) [as g(A − B) = g(A) − g(B)]

= NC(u) − {u} [by 2 of Proposition 3]

= NC
d (u) [from Definition 6]

Similarly, the other part can be proved.
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3.3 Rough Set Model for IqBa2

For a set-theoretic rough set model of the algebra IqBa2, we have to develop
a pair of lower-upper approximations which must be dual with respect to the
quasi-complementation and satisfies the property IP2: I(a ∨ b) = Ia ∨ Ib. Due
to this reason, we define a new pair of lower-upper approximations as follows.

Definition 7. Let 〈U, g(C)〉 be a g-covering approximation space. Then for any
subset A of U , Ag(C),2, the g, 2 lower approximation of A and A

g(C),2
, the g, 2

upper approximation of A are defined by

Ag(C),2 = {u ∈ U : Ng(C)
d (u) ⊆ A} (3)

and
A

g(C),2
= {u ∈ U : NC

d (u) ∩ A �= ∅}. (4)

Proposition 5. In a g-covering approximation space 〈U, g(C)〉, Ag(C),2 and

A
g(C),2

are dual approximations with respect to the quasi-complementation ¬
defined through g.

Proof.

¬
(
¬Ag(C),2

)
= ¬

(
g(A)c

g(C),2

)
[as ¬A = (g(A))c]

= ¬{u ∈ U : Ng(C)
d (u) ⊆ g(A)c} [by Definition 7]

= U − {g(u) : Ng(C)
d (u) ⊆ g(A)c} [as ¬A = U − g(A)]

= U − {u ∈ U : Ng(C)
d (g(u)) ⊆ g(A)c} [taking g(u) as u]

= {u ∈ U : Ng(C)
d (g(u)) ∩ g(A) �= ∅}

= {u ∈ U : g(NC
d (u)) ∩ g(A) �= ∅} [by Proposition 4]

= {u ∈ U : g(NC
d (u) ∩ A) �= ∅} [as g(A ∩ B) = g(A) ∩ g(B)]

= {u ∈ U : NC
d (u) ∩ A �= ∅} [as g is an involution]

= A
g(C),2

.

As ¬¬A = A, hence Ag(C),2 and A
g(C),2

are dual approximations with respect to
the quasi-complementation ¬ defined through g.

Proposition 6. In a g-covering approximation space 〈U, g(C)〉, the following
results hold.

1. Xg(C),2 = U and ∅g(C),2 = ∅.
2. If A ⊆ B ⊆ U then Ag(C),2 ⊆ Bg(C),2 and A

g(C),2 ⊆ B
g(C),2

.

3. A ∩ Bg(C),2 = Ag(C),2 ∩ Bg(C),2 and A ∪ B
g(C),2

= A
g(C),2 ∪ B

g(C),2
, for all

A,B ⊆ U .
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Proof. Proof of 1 is straightforward.
For proof of 2, let x ∈ Ag(C),2. Then by Definition 7, Ng(C)

d (x) ⊆ A and hence

N
g(C)
d (x) ⊆ B (as A ⊆ B). This gives, x ∈ Bg(C),2 and hence Ag(C),2 ⊆ Bg(C),2.

Similarly, A
g(C),2 ⊆ B

g(C),2
holds.

Proof of 3: To show A ∩ Bg(C),2 = Ag(C),2 ∩ Bg(C),2, we have to prove Ag(C),2 ∩
Bg(C),2 ⊆ A ∩ Bg(C),2. Let x ∈ Ag(C),2 ∩ Bg(C),2. Then, Ng(C)

d (x) ⊆ A and B.

Therefore, Ng(C)
d (x) ⊆ A∩B and hence x ∈ A ∩ Bg(C),2. Thus, Ag(C),2∩Bg(C),2 ⊆

A ∩ Bg(C),2 and hence the result is proved. Similarly, the other part of 3 can be
proved.

Theorem 1. In a g-covering approximation space 〈U, g(C)〉, A ∪ Bg(C),2 =

Ag(C),2 ∪ Bg(C),2 holds for all A,B ⊆ U if and only if for each u ∈ U , Ng(C)
d (u)

contains at most one element of U .

Proof. Let A ∪ Bg(C),2 = Ag(C),2 ∪ Bg(C),2, for all A,B ⊆ U . It is to be proved

that N
g(C)
d (u) contains at most one element of U . If possible, let N

g(C)
d (u)

contain more than one element of U . Then, there are at least two distinct
elements y, z ∈ N

g(C)
d (u) where y �= u and z �= u [as u /∈ N

g(C)
d (u)]. Let

A = {y} and B = N
g(C)
d (u) − {y}. Then z ∈ B �= ∅. Then by hypothesis,

A ∪ Bg(C),2 = Ag(C),2 ∪ Bg(C),2 holds, where A = {y} and B = N
g(C)
d (u) − {y}.

This gives, Ng(C)
d (u)

g(C),2 = Ag(C),2 ∪ Bg(C),2. As N
g(C)
d (u) is a subset of itself

so u ∈ N
g(C)
d (u)

g(C),2 = Ag(C),2 ∪ Bg(C),2. This implies, either u ∈ Ag(C),2 or

u ∈ Bg(C),2, i.e., either N
g(C)
d (u) ⊆ {y} or N

g(C)
d (u) ⊆ N

g(C)
d (u) − {y}. But we

have z ∈ N
g(C)
d (u) � {y} and y ∈ N

g(C)
d (u) � N

g(C)
d (u) − {y}. Thus, Ng(C)

d (u)
contains at most one element of U , for all u ∈ U .
Conversely, let us assume that each N

g(C)
d (u) contains at most one element of U .

We have to prove that A ∪ Bg(C),2 = Ag(C),2 ∪Bg(C),2 holds for all A,B ⊆ U . By
2 of Proposition 6, it is sufficient to show that A ∪ Bg(C),2 ⊆ Ag(C),2 ∪ Bg(C),2.

Let u ∈ A ∪ Bg(C),2. Then, Ng(C)
d (u) ⊆ A ∪ B. As N

g(C)
d (u) contains at most

one element, so, it follows that either N
g(C)
d (u) ⊆ A or N

g(C)
d (u) ⊆ B and hence

u ∈ Ag(C),2 ∪ Bg(C),2. Thus, A ∪ Bg(C),2 = Ag(C),2 ∪ Bg(C),2, for all A,B ⊆ U .

Remark 1. As Ag(C),2 and A
g(C),2

are dual approximations with respect to the

quasi-complementation ¬ and A ∩ B = ¬(¬A ∪ ¬B) so, A ∩ B
g(C),2

= A
g(C),2 ∩

B
g(C),2

holds for all A,B ⊆ U if and only if for each u ∈ U , Ng(C)
d (u) contains

at most one element of U .

The following example is considered to show that Ag(C),2 may not be a subset
of A, for some A ⊆ U .
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Example 4. Let U, g and C be the same as defined in Example 1. Then,
N

g(C)
d (a) = {e}, Ng(C)

d (b) = {e}, Ng(C)
d (c) = {d}, Ng(C)

d (d) = {c}, Ng(C)
d (e) = ∅.

Let A = {e}. Then, Ag(C),2 = {a, b, e} � A = {e}.

Rough Set model for IqBa2: Let 〈U, g(C)〉 be a g-covering approximation
space with for each u ∈ U , Ng(C)

d (u) contains at most one element of U . Now,
〈2U ,∩,∪,¬, ∅, U〉 is a qBa, where ¬A = (g(A))c, for all A ∈ 2U . We define → in
2U as follows
A → B = Ac ∪ B.
Then, it is obvious that A → B = U if and only if A ⊆ B and consequently
〈2U ,∩,∪,→,¬, ∅, U〉 becomes an IqBa. We now define IA, for all A ⊆ U as
IA = Ag(C),2. Then by Proposition 6 and Theorem 1, 〈2U ,∩,∪,→,¬, I, ∅, U〉 is
an IqBa2.

Remark 2.

1. If we define implication as A →1 B = g(A → B) = ¬A ∪ g(B), for all
A,B ∈ 2U then 〈2U ,∩,∪,→1,¬, I/I1, ∅, U〉 becomes a different model for
IqBa2 with respect to the implication →1.

2. By Example 4, modal axiom T: Ia ≤ a [8] does not hold and hence
〈2U ,∩,∪,→,¬, I, ∅, U〉 is not a model for IqBa2,T.

4 Conclusion and Future Work

We may summarise the contents of this paper and indicate some future directions
of work as follows.

– A g-covering approximation space has been developed out of a covering
approximation space and an involution g. A necessary and sufficient condition
is obtained so that these two spaces coincide.

– Familiar notions that are available in a covering approximation space have
been introduced in a g-covering approximation space and relationships
between them are studied.

– Deleted neighborhood or anti-reflexive neighborhood has been incorporated
in this theory. Basically, they are not granules but their importance has been
mentioned [9] in the field of computer security.

– A pair of lower-upper approximations has been introduced which are dual
with respect to the quasi-complementation in a g-covering approximation
space. Using them, a rough set model of IqBa2 has been presented.

– In covering based rough set theory, there are many lower-upper approxima-
tions of a set in various literature. Some of them are dual with respect to the
set-theoretic complementation whereas other pairs are not so. A study may be
continued on them so that the notion of quasi-complementation can be incor-
porated and rough set models of remaining algebras may be constructed.
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